
Automatic and Incremental Product Optimization for
Software Product Lines

Andreas Demuth
Johannes Kepler University

Linz, Austria
Email: andreas.demuth@jku.at

Roberto E. Lopez-Herrejon
Johannes Kepler University

Linz, Austria
Email: roberto.lopez@jku.at

Alexander Egyed
Johannes Kepler University

Linz, Austria
Email: alexander.egyed@jku.at

Abstract—Software Product Lines (SPLs) have gained popu-
larity in industry as they foster the reuse of artifacts, such as code,
and reduce product development effort. Although some SPLs
ensure that only valid products are configurable, those products
are not necessarily optimal. For instance, they may include code
that is not necessary for providing the desired functionality – often
because of erroneous traceability between features and code. Such
unnecessary code may be disallowed in safety critical domains,
it may lead to losses in runtime performance, or it may lead to
errors during later SPL evolution. In this paper, we present an
approach for automatic and incremental product optimization.
Our approach leverages product functionality tests to ensure
that configured products do not include unnecessary artifacts –
an automatic re-optimization of products after SPL evolution is
performed incrementally. The evaluation results show that such
a re-optimization takes only milliseconds.

Keywords—Software product lines, optimization, evolution

I. INTRODUCTION

Software Product Lines (SPLs) [1] are commonly used in
industry as they foster and support software reuse, enabling
quicker development of products. Individual units of function-
ality are typically bundled in features [2]. The functionality
shared between all products as well as the possible points of
variation (i.e., product variability) are defined in feature models
[3] that describe feature relations and thus define the set of
configurable products. Based on feature models, products are
configured by selecting a subset of the available features. A
selection is valid if it conforms to consistency rules imposed by
the feature model and the relations between features. Based on
a selection, artifacts (or assets [4]) associated with the selected
features are combined to form products that can be delivered
to customers. For SPLs in particular, those assets typically
consist of source code, test scripts, or software models that
are combined – transformed to code in the case of models –
and compiled.

While it seems that those basic SPL concepts are easy to
implement, literature has identified several serious challenges
[5]. One of the biggest threats are errors in a feature model or
the traceability between features and the assets that implement
them. Such errors may lead to products that are correct with re-
spect to the feature model but that cannot be compiled because
of – just to name one example – missing files. Hence, checking
the correctness of products is essential for successfully using
SPLs [6]. Safe composition [2] is an important approach that
addresses this common and complex issue by ensuring that all
valid feature combinations lead to type-safe programs. Note

that these programs may not be working as expected in practice
(e.g., the desired functionality is not provided).

However, the correctness ensured by approaches such as
safe composition does not mean configured products are
optimal. For example, configured products may contain not
only those assets (e.g., source code files) that are required
for providing the desired functionality, but they may also
contain additional assets. This phenomenon occurs when the
association between assets and features is done incorrectly
during variability modeling of the product line. In practice,
product lines are often introduced when the need for cus-
tomization of an existing product grows. Variability modeling
is then often done by breaking down a reference system into
individual features [7]. Since it is often not possible do easily
determine which feature is implemented by which asset [8]
– as the reference system was not developed with reuse of
individual components in product lines in mind – product
line designers may associate assets with common features
(e.g., the root feature). In doing so, they ensure that the
assets are available in a large number of products and that
product configuration is safe (according to approaches such
as safe composition). However, additional (i.e., unnecessary)
assets may be prohibited in safety-critical domains [9] and
may also affect a product in various ways. For instance, the
system requirements for installing and running the delivered
product may be increased and runtime performance may suffer
significantly.

Moreover, as domains and market demands evolve over
time, so do SPLs [5], [10]. During evolution, non-optimal
products imply a higher risk of emerging errors due to potential
dependencies between assets. Of course, evolving an SPL may
also cause optimal products to become non-optimal. Therefore,
SPL evolution may also require a re-optimization of products.

In this paper we present an automatic approach for opti-
mizing products and removing unnecessary assets while pre-
serving functionality. We define general conditions that have
to be established for optimal products and discuss how those
conditions can be established. In particular, we discuss how the
approach can be applied incrementally for evolving product
lines with a limited set of existing products.

II. SOFTWARE PRODUCT LINES IN PRACTICE

Before we discuss common SPL issues and product op-
timization in detail, let us first describe basic SPL modeling



concepts, discuss how those concepts are adopted by compa-
nies in practice, and illustrate the role of product testing in
SPLs.

A. Basic Concepts

Formally, a product line (PL) consists of the following
parts, as shown in (1): a) feature model (FM), b) asset model
(AM), c) feature-to-asset traces (FAT), and products (PR).

PL := 〈FM,AM,FAT,PR〉 (1)

1) Feature Model: The feature model, as shown in (2),
contains a set of features (F) and is used for describing the
different functionality a product can provide at a high level
of abstraction [1]. Moreover, there are associations (FA) and
additional cross-tree constraints (FC) that both express how
features are related and how they should be selected during
configuration. Finally, one of the existing features is selected
as the models root feature.

FM := 〈F,FA,FC, root ∈ F〉 (2)

2) Asset Model: An asset model, as shown in (3), in-
cludes all the assets (A) which may be used to compose
the actual product to be delivered. Although these assets are
typically source code files, configuration information or data
schemas, image files used by user interfaces, etc., abstractions
of code may also be used. For example, UML models that
are transformed to source code. Note that assets are generic
and can represent arbitrary artifacts at any level of granularity.
For instance, an asset may be defined for an entire file or
also for a specific method. This view of assets stems from
common product line tools and techniques that allow for the
composition of individual methods or even variables in source
files or design models [11], [12].

In contrast to features, assets are not organized hierarchi-
cally (i.e., there is no root asset). However, as there may be
dependencies between assets (e.g., method a calls method b)
or also conflicts if certain assets are present in a system at
the same time (e.g., alternative implementation of a method),
thus there may be asset constraints (AC) that describe such
relations.

AM := 〈A,AC〉 (3)

3) Feature-to-Asset Traces: When the functionality of pos-
sible products and the assets from which those products can
be built are defined, it still has to be defined which assets are
used for implementing which feature. This is done via feature-
to-asset traces (FAT), shown in (4). Each trace is a pair that
consists of a feature and a set of assets.

FAT := {〈x ∈ F, y ⊆ A〉} (4)

4) Products: Finally, we define products. The configured
products (PR) simply consists of individual configurations, as
shown in (5). Each configuration is identified by two sets, one
holding the selected features and one holding the assets from
which the configured product is composed.

PR := {〈f ⊆ F, a ⊆ A〉|∀x ∈ f : ∃〈x, y〉 ∈ FAT⇒ y ⊆ a}
(5)

B. Adoption Process

Let us now briefly discuss the typical process of SPL con-
cept adoption. The ideal, proactive, process starts with defining
common and variable functionality of desired products (i.e., the
feature model) [7]. It is followed by a structured development
of assets with the defined variability and systematic reuse in
mind [13]. Traces between features and assets are therefore
easy to identify.

However, this ideal process cannot always be applied in
practice as it requires planning desired products before their
development. Typically, the decision for establishing a well
defined product line is made after an initial (reference) product
was developed and partly adapted several times afterwards
to tailor it to different customer needs [14]. While breaking
down the functionality of desired products to features is
not affected by the existing reference product, the already
existing assets that implement those features have not been
developed with product variability and systematic reuse in
mind – quite contrary to the ideal SPL process discussed
above. This means that defining the required feature-to-asset
traceability is far from trivial and requires detailed knowledge
about the reference product. Existing approaches that generate
such traces from products (e.g., [15]) typically rely on the
actual – and thus potentially non-optimal – asset combinations.
Thus, obtaining correct traceability for complex systems that
leads to optimal products remains a challenge [8].

C. Product Testing

Let us now describe how product testing is used to validate
that individual products provide the expected functionality and
meet customer expectations. For every feature, and also feature
combinations, a specific set of test cases has to be executed
successfully to ensure correct behavior. We define the set of
all available test cases as TC. Inspired by [6], the association
between features and tests is called feature-to-test traceability
(FTT), as shown in (6).

FTT := {〈x ⊆ F, y ⊆ TC〉} (6)

The complete test suite for a product is the sum of the test
cases associated with the individual features (or combinations
thereof) selected in a product, as shown in (7).

testSuite : P(F)→ P(TC),

x 7→ {t ∈ TC|∃z ⊆ x, 〈u, v〉 ∈ FTT : z = u ∧ t ∈ v} (7)

To check wether a specific product is working correctly, the
test suite is executed on the product (i.e., the resulting set of
assets) using the function workingP , as shown in (8), where
the subscript P denotes ”Product”.

workingP : (P(TC),P(A))→ {true, false},
〈x, y〉 7→ ∀z ∈ x : workingS(z, y)

(8)

Indeed, the product is working if each test case is executed
successfully. That is, the function workingS , shown in (9),
returns true for the single test case (denoted by the subscript
S) executed on the product.

workingS : (TC,P(A))→ {true, false},

〈x, y〉 7→


true if test x succeeds

with assets y,
false otherwise

(9)



Fig. 1. Overview of a media player product line. Features and assets for a
streaming client are marked gray.

Note that feature-to-asset traceability is required in order
to obtain an executable configuration from a feature selection
on which the required tests for the feature selection are
performed. Moreover, obtaining the executable system from
feature-to-asset traces keeps the tests for specific features (or
combinations thereof) independent of implementation details
(i.e., test cases do not have to be adapted but only executed
when the implementation of a feature changes).

III. RUNNING EXAMPLE

To illustrate our approach, we use a simple software
product line for media players. The feature model of the media
player is depicted in the top part of Fig. 1. A media player can
be capable of streaming videos from a server, playing locally
stored files, or it can even act as a media library that helps
the user organizing his or her media systematically. Formally,
the features FE are defined in (10) (we use the subscript E to
indicate definitions specific for our running example).

FE := {root, streaming, local, library} (10)

The available assets, shown in the lower part of Fig. 1, are
formally defined in (11).

AE := {a, b, c, d, e, f} (11)

Since at time of initial development of the reference system
(i.e., a fully functional media player with all available features)
systematic reuse of assets was not a concern for developers,
there is little separation of concerns in the source code. For
instance, database access is performed directly from individual
methods instead of using a common database access object.
Thus, finding those pieces of code that actually require a
database is not easy. To still make sure that all products of the
SPL will work correctly, nearly all assets are simply associated
with the root feature, including the database assets, as shown
by the dashed arrows in Fig. 1. Formally, this feature-to-asset
traceability FATE is defined in (12).

FATE := {〈root, {d, e, f}〉, 〈streaming, {a}〉,
〈local, {b}〉, 〈library, {c}〉} (12)

The only assets associated with specific features are those that
actually display corresponding buttons in the user interface
to open a view. Although this example may seem naive, it
captures an essential problem that exists when dealing with
large and highly complex industrial systems for which a
product line should be established.

For testing products, five test cases, as defined in (13), are
available.

TCE := {tc1, tc2, tc3, tc4, tc5} (13)

The feature-to-test traceability FTTE for the product line is
defined in (14).

FTTE := {〈{root}, {tc1, tc5}〉, 〈{streaming}, {tc2}〉,
〈{local}, {tc3}〉, 〈{library}, {tc4}〉}

(14)

Let us now configure a lightweight streaming client that
plays videos directly from a server. For this product, the
features root and streaming are selected (as indicated by
the gray background of those features in Fig. 1). The corre-
sponding assets for the streaming client are also highlighted
in gray in Fig. 1. A formal definition of the specific product
PRSC is shown in (15).

PRSC := 〈{root, streaming}, {a, d, e, f}〉 (15)

We further assume that PRSC is the only product configured
(i.e., PRE := {PRSC}). The corresponding test suite TSPRSC for
PRSC is shown in (16), the testing result resultPRSC is shown
in (17).

TSPRSC = testSuite({root, streaming}) (16)
= {tc1, tc2, tc5}

resultPRSC = workingP (TSPRSC , {a, d, e, f}) (17)
= true

The result shows that the product PRSC is working and can be
delivered to customers.

IV. OPTIMIZATION OF PRODUCTS

As we have discussed in Section I, there are various reasons
why configured products are not optimal. In our running
example, the product PRSC includes various classes and also
a full database, thus the risk of, for instance, missing classes
is minimized. However, this also means that the product is far
from being lightweight as it requires nearly the same amount
of disk space as other configurations. Moreover, the product
will require an update each time one of the deployed classes
is improved – even if the class is not necessary in the product.
In safety-critical domains, such dead assets may be prohibited
at all. Let us now discuss how such issues can be avoided by
performing product optimization. We start with a definition of
an optimal product.

A product is optimal if it is working and no non-empty sub-
set of the associated assets can be removed without breaking
functionality, as shown in (18).

optimal : PR→ {true, false}
〈x, y〉 7→ workingP (testSuite(x), y)∧
@z ⊂ y : workingP (testSuite(x), z)

(18)



Indeed, searching for such subsets of a product’s assets that
can be removed without breaking functionality is possible in
theory. However, practically such an approach is not feasible as
a product may contain a large number of assets, likely hundreds
or thousands, and executing test cases may also require a
significant amount of time.

Therefore, we propose a more efficient and practical opti-
mization process that leverages information captured during
testing. The optimization process consists of the following
two steps: i) obtain the assets in a product that are actually
required for providing expected functionality, and ii) identify
and remove unnecessary assets from the product. Let us now
describe these steps in more detail.

A. Generation of Test-to-Asset Traces

The first step of the optimization process focuses on finding
those assets of a product that actually provide the desired
functionality. For a given product, a set of test cases required
for ensuring correct behavior of the product is available (based
on defined feature-to-test traceability). The executable system
to be tested is composed by combining the assets associated
with the selected features. All required test cases are then
executed on the composed system. During testing, all assets
that are actually used (e.g., accessed, loaded) are captured and
test-to-asset traceability (TAT) is built, as shown in (19).

TAT := {〈x ∈ TC, y ⊆ A, z ⊆ A〉|
∃〈a, b〉 ∈ PR : x ∈ testSuite(a) ∧ y = b ∧ z = assets(x, y)}

(19)

The helper function assets is defined as shown in (20) and
returns the assets that are used during the execution of a
specific test case.

assets : (TC,P(A))→ P(A),

(x, y) 7→ {z|z used during workingS(x, y)} (20)

Note that the traces are built with data that can be captured
during product testing. Thus, there is no need for executing
any test cases only for the purpose of trace generation.

For a given product, the used assets can then be derived
by the function usedAssets, as shown in (21).

usedAssets : PR→ P(A),

〈x, y〉 7→ {z ∈ A|∃a ∈ testSuite(x), 〈b, c, d〉 ∈ TAT :

a = b ∧ y = c ∧ z ∈ d}
(21)

B. Removal of Unnecessary Assets

Once the product has been configured and tested, the test-
to-asset traces have been established, the second step of the
optimization process can be performed. Using the captured
test-to-asset traces, traceability between products and their
unused assets (PUA) for can be derived, as shown in (22).

PUA := {〈〈x, y〉 ∈ PR, z ⊆ y〉|z = y\usedAssets(〈x, y〉)}
(22)

Using this information, the set of unnecessary assets can
easily be derived for a specific product by the function
unusedAssets, as shown in (23).
unusedAssets : PR→ P(A),

〈x, y〉 7→ {z ∈ A|∃〈〈a, b〉, c〉 ∈ PUA : x = a ∧ y = b ∧ z ∈ c}
(23)

Finally, a product can be optimized by removing all unneces-
sary assets, as shown in (24).

optimize : PR→ PR,
〈x, y〉 7→ 〈x, y\unusedAssets(〈x, y〉))〉 (24)

Note that removing assets that were not accessed during
testing cannot change the overall result of the functionality
test. Moreover, all assets remaining in the optimized product
are used during testing and thus cannot be removed without
affecting functionality. Thus, the optimized product obtained
through (24) is optimal with respect to (18). Next, we apply
the presented process on our running example.

C. Optimization of Sample Product

After executing the test suite TSPRSC , the test-to-asset
traceability as shown in (25) is captured.

TATE := {〈tc1, {a, d, e, f}, {e}〉,
〈tc2, {a, d, e, f}, {a}〉,
〈tc5, {a, d, e, f}, {e}〉}

(25)

When executed, the tests only use the assets a and e. The used
assets for the streaming client (usedAssetsPRSC ) can then be
retrieved as shown in (26).

usedAssetsPRSC = usedAssets(PRSC) = {a, e} (26)

Moreover, the traceability between products and their unused
assets can be derived for the sample product line (PUAE), as
shown in (27).

PUAE := {〈PRSC, {d, f}〉} (27)

The unused assets for the sample product (unusedAssetsPRSC )
are then derived as shown in (28).

unusedAssetsPRSC = unusedAssets(PRSC) = {d, f} (28)

Finally, the gathered information is used to derive the opti-
mized (indicated by the superscript O) product PRO

SC, as shown
in (29).

PRO
SC = optimize(PRSC)

= 〈{root, streaming}, {a, e}〉
(29)

Note that the optimized product does no longer contain various
classes, represented by the asset d, and the database, which
is represented by asset f. Thus, changes of those assets will
not trigger unnecessary updates of the streaming client and it
requires less disk space.

V. INCREMENTAL HANDLING OF SPL EVOLUTION AND
FURTHER OPTIMIZATION

So far we have illustrated how individual products can be
optimized based on information such as the SPL definition
and traces from features to assets and test cases. However,
different parts of an SPL typically evolve over time and
this evolution also affects optimal products. Specifically, the
following evolution scenarios may occur, as depicted on the
left-hand side of Fig. 2:

• Feature model change (∆F)

• Asset model change (∆A)



Fig. 2. Points of evolution in an SPL.

• Feature-to-asset traceability change (∆FAT)

• Test case change (∆TC)

• Feature-to-test traceability change (∆FTT)

Those evolution scenarios above may lead to the following
changes, as shown in the middle part (Products) of Fig. 2:

• Product configuration change (∆P)

• Test suite change (∆TS)

The theory presented in Section II and Section IV allows
for handling evolution and deriving the effects on optimal
versions of products incrementally. Next, we discuss the effects
of different SPL evolution scenarios in detail. We focus on
evolution that changes FAT, TC, or FTT because such changes
are most complex to process. Note that changes of P, F, A, and
TS cause effects that are subsets of the scenarios presented
below and are thus not discussed in detail.

A. Feature-to-Asset Traceability Change (∆FAT)

We start with changes of feature-to-asset traceability. Such
changes may occur for various reasons. For instance, existing
assets may no longer implement a specific feature because
of reductions in customers’ requirements and quality expecta-
tions. If customers’ requirements and quality expectations do
increase, however, it may be necessary to add more assets to a
feature to reach the expected functionality and level of quality.

1) Addition of Implementation Asset: Let us first consider
a case where the asset a ∈ A should be added to the feature
f ∈ F (i.e., traceability between f and a should be established).
The set of affected products consists of all products that do
include f but do not include other feature to which the asset
is already linked. Note that the latter condition is equivalent to
the absence of the added asset in the product. Formally, those
products can be derived as shown in Eq. (30).

affProdFATA : 〈F,A〉 → P(PR),

〈x, y〉 7→ {〈a, b〉 ∈ PR|x ∈ a ∧ y /∈ b} (30)

For all those products, a re-execution of their complete test
suite is necessary as the asset a will be added and may be
used in any of the applied test cases.1 This means that new

1Note that the number of test cases to re-execute may be reduced by
applying optimization techniques [16].

test-to-asset traces have to be generated, as it is done by the
function defined in Eq. (31).

genTracesFATA : (F,A)→ {〈x ∈ TC, y ⊆ A, z ⊆ y〉},
(x, y) 7→ {〈a, b, c〉|∃〈d, e〉 ∈ affProdFATA(x, y),

tc ∈ testSuite(d) :

a = tc ∧ b = e ∪ y ∧ c = assets(tc, e ∪ {y})}

(31)

As the asset a is added to the affected products, existing test-
to-asset traces may become outdated. This is the case if there
is no unaffected product for which the trace is still required.
The function shown in Eq. (32) can be used to derive those
traces.

outdTracesFATA : (F,A)→ P(TAT),

(x, y) 7→ {〈a, b, c〉 ∈ TAT|@〈d, e〉 ∈ PR\affProdFATA(x, y) :

a ∈ testSuite(d) ∧ b = e
(32)

Based on the generated test-to-asset traces, those assets that
are additionally used by a specific product can be derived as
shown in Eq. (33).

addAssetsFATA : (PR,F,A)→ P(A),

(〈x, y〉, f, a) 7→ {z ∈ A|(∃tc ∈ testSuite(x),

〈b, c, d〉 ∈ genTracesFATA(f, a) :

b = tc ∧ c = y ∪ {a} ∧ z ∈ d) ∧ z /∈ usedAssets(〈x, y〉)}
(33)

Assets that are no longer used by a specific product can be
derived as shown in Eq. (34).

outdAssetsFATA : (PR,F,A)→ P(A),

(〈x, y〉, f, a) 7→ {z ∈ A|z ∈ usedAssets(〈x, y〉)∧
¬(∃tc ∈ testSuite(x), 〈b, c, d〉 ∈ genTracesFATA(f, a) :

b = tc ∧ c = y ∪ {a} ∧ z ∈ d)}
(34)

The optimal version of a product is affected if additional assets
are used by its test suite or previously used assets are no longer
required, as shown in Eq. (35).

optAffFATA : 〈PR,F,A〉 → {true, false},
(〈x, y〉, f, a) 7→ addAssetsFATA(〈x, y〉, f, a) 6= ∅∨

outdAssetsFATA(〈x, y〉, f, a) 6= ∅
(35)

Only for those products with an affected optimal version, as
derived in Eq. (36), the optimization (i.e., the removal of
unnecessary assets) must be done again.

reOptProdFATA : (F,A)→ P(PR),

(x, y) 7→ {z|z ∈ affProdFATA(x, y)∧
optAffFATA(z, y)}

(36)

The new optimized products for the addition of a feature-to-
asset trace between f and a can be derived incrementally as
shown in Eq. (37).

optimizeFATA : (F,A)→ 〈〈u, v〉 ∈ PR, 〈x ⊆ F, y ⊆ A〉〉,
(f, a) 7→ 〈〈u, v〉, 〈x, y〉〉|∃〈u, v〉 ∈ reOptProdFATA(f, a) :

〈i, j〉 = optimize(〈u, v〉) ∧ x = u∧
y = (j\outdAssetsFATA(〈u, v〉, f, a))

∪addAssetsFATA(〈u, v〉, f, a)
(37)



Note that this function returns pairs of the affected products
and their updated optimal version.

Finally, the existing test-to-asset traces TAT can be updated
to TAT′, as shown in Eq. (38).

TAT′ = (TAT\outdTracesFATA(f, a)) ∪ genTracesFATA(f, a)
(38)

Moreover, the set of products can be updated to include the
asset a in the affected products, as shown in Eq. (39).

PR′ := PR\affProdFATA(f, a) ∪ {〈x, y〉|
∃〈i, j〉 ∈ affProdFATA(f, a) : x = i ∧ y = j ∪ {a}} (39)

2) Removal of Implementation Asset: Let us now consider
the case where the existing trace between a feature f ∈ F
and an asset a ∈ A should be removed (i.e., a is no longer
implementing f ). In this case, all products that include f
are potentially affected. The set of actually affected products
contains only those which do not include another feature which
is implemented by the asset (i.e., the change in FAT will
actually lead to a removal of the asset from the product), as
shown in Eq. (40).

affProdFATR : 〈F,A〉 → P(PR),

〈x, y〉 7→ {〈a, b〉 ∈ PR|x ∈ a ∧ ¬(∃z ∈ a,∃〈u, v〉 ∈ FAT :

z 6= x ∧ z = u ∧ b = v)}
(40)

For each of the actually affected products, only the test cases
that used the no longer required asset have to be re-executed
and new test-to-asset traceability must be generated. Eq. (41)
shows how those test cases can be derived for a specific
product.

affTestCasesFATR : 〈PR,A〉 → P(TC),

〈〈x, y〉, z〉 7→ {v ∈ TC|v ∈ testSuite(x) ∧ ∃〈a, b, c〉 ∈ TAT :

a = v ∧ b = y ∧ z ∈ c}
(41)

The new test-to-asset traces can then be derived as shown in
Eq. (42).

genTracesFATR : (F,A)→ {〈a ∈ TC, b ⊆ A, c ⊆ b〉},
(x, y) 7→ {〈a, b, c〉|∃〈d, e〉 ∈ affProdFATR(x, y),

∃tc ∈ affTestCasesFATR(〈d, e〉, y) :

a = tc, b = e\{y} ∧ c = assets(tc, b)}

(42)

For all unaffected test cases, updated test-to-asset traces for
the updated product with the removed asset can be derived
from existing information without re-execution, as shown in
Eq. (43).

updatedTracesFATR : 〈PR,A〉 → {〈a ∈ TC, b ⊆ A, c ⊆ b〉},
〈〈x, y〉, z〉 7→ {〈a, b, c〉|

a ∈ testSuite(x)\affTestCasesFATR(〈x, y〉, z)∧
∃〈d, e, f〉 ∈ TAT : a = d ∧ y = e ∧ c = f ∧ b = y\{z}}

(43)

The combined set of new traces can be derived as shown in
Eq. (44).

newTracesFATR : (F,A)→ {〈a ∈ TC, b ⊆ A, c ⊆ b〉},
(x, y) 7→ {z|z ∈ genTracesFATR(x, y)∨

∃p ∈ affProdFATR(x, y) : z ∈ updatedTracesFATR(p, y)}
(44)

The outdated test-to-asset traces (i.e., existing traces that are no
longer required after a is removed from the affected products)
can then be derived as shown in Eq. (45)

outdTracesFATR : (F,A)→ P(TAT),

(x, y) 7→ {〈a, b, c〉 ∈ TAT|@〈d, e〉 ∈ PR\affProdFATR(x, y) :

a ∈ testSuite(d), b = e
(45)

For each affected product, the assets that are additionally used
by the test suite can be derived, as shown in Eq. (46).

addAssetsFATR : (PR,F,A)→ P(A),

(〈x, y〉, f, a) 7→ {z ∈ A|(∃tc ∈ testSuite(x),

〈b, c, d〉 ∈ newTracesFATR(f, a) :

b = tc ∧ c = y\{a} ∧ z ∈ d) ∧ z /∈ usedAssets(〈x, y〉)}
(46)

Assets that are no longer used by an affected product can be
derived as shown in Eq. (47).

outdAssetsFATR : (PR,F,A)→ P(A),

(〈x, y〉, f, a) 7→ {z ∈ A|z ∈ usedAssets(〈x, y〉)∧
¬(∃tc ∈ testSuite(x), 〈b, c, d〉 ∈ newTracesFATR(f, a) :

b = tc ∧ c = y\{a} ∧ z ∈ d)}
(47)

The optimal version of the product is affected if either i)
additional assets are used by its test suite or ii) previously
used assets are no longer required, as shown in Eq. (48).

optAffFATR : 〈PR,F,A〉 → {true, false},
(〈x, y〉, f, a) 7→ addAssetsFATR(〈x, y〉, f, a) 6= ∅∨

outdAssetsFATR(〈x, y〉, f, a) 6= ∅
(48)

Only for the set of products with affected optimal version,
as derived in Eq. (49), the optimization (i.e., removal of
unnecessary assets) must be done again.

reOptProdFATR : (F,A)→ P(PR),

(x, y) 7→ {z|z ∈ affProdFATR(x, y) ∧ optAffFATR(z, x, y)}
(49)

For those products, the new optimized product can be derived
incrementally as shown in Eq. (50).

optimizeFATR : (PR,F,A)→ 〈〈u, v〉 ∈ PR, 〈x ⊆ F, y ⊆ A〉〉,
(f, a) 7→ 〈〈u, v〉, 〈x, y〉〉|∃〈u, v〉 ∈ reOptProdFATR :

〈i, j〉 = optimize(〈u, v〉) ∧ x = u∧
y = (j\outdAssetsFATR(〈u, v〉, f, a))

∪addAssetsFATR(〈u, v〉, f, a)
(50)

Finally, the test-to-asset traces and the affected products
can be updated, as shown in Eq. (51) and Eq. (52), respectively.

TAT′ = (TAT\outdTracesFATR(f, a)) ∪ newTracesFATR(f, a)
(51)

PR′ := PR\affProdFATR(f, a) ∪ {〈x, y〉|
∃〈i, j〉 ∈ affProdFATR(f, a) : x = i ∧ y = j\{a}} (52)



B. Test Case Change (∆TC)

Let us now consider an evolution scenario in which a test
case tc ∈ TC is adapted as a consequence of, for instance,
increased quality requirements. In this scenario, all products
that include the changed test case tc in their test suite are
affected, as shown in Eq. (53).

affectedTC : TC→ P(PR),

x 7→ {〈y, z〉|x ∈ testSuite(y)} (53)

From existing test-to-asset traces, those traces that were previ-
ously generated for tc become outdated. They can be derived
as shown in Eq. (54).

oldTracesTC : TC→ P(TAT),

tc 7→ {〈x, y, z〉 ∈ TAT|x = tc} (54)

For each affected product pr ∈ affectedTC(tc), tc must be
re-executed. This generates a new set of test-to-asset traces, as
shown in Eq. (55).

newTracesTC : TC→ {〈x ∈ TC, y ⊆ A, z ⊆ y〉},
tc 7→ {〈x, y, z〉|x = tc ∧ ∃〈a, b〉 ∈ affectedTC(tc) :

y = b ∧ z = assets(tc, y)}
(55)

For each of the affected products pr ∈ affectedTC(tc),
the additional assets that are used by the updated test case and
also those assets that are no longer used can be derived. If the
test case uses assets that it did not use before the update, the
additional assets must be added to the optimal version of the
product if no other test case in the test suite also uses those
assets. Similarly, if assets that were used before the update
are no longer used afterwards, they must be removed from
the optimal product if they are not also used by another test
case. The functions for deriving the sets of additionally and
no longer used assets are shown in Eq. (56) and Eq. (56),
respectively.

addUsedAssetsTC : (TC,PR)→ P(A),

(tc, 〈x, y〉) 7→ {z|z ∈ y ∧ ∃〈a, b, c〉 ∈ newTracesTC(tc),

〈d, e, f〉 ∈ oldTracesTC(tc) :

a = d ∧ b = e ∧ b = y ∧ z ∈ c ∧ z /∈ f}
(56)

outdAssetsTC : (TC,PR)→ P(A),

(tc, 〈x, y〉) 7→ {z|z ∈ y ∧ (∃〈a, b, c〉 ∈ oldTracesTC(tc),

〈d, e, f〉 ∈ newTracesTC(tc) :

a = d ∧ b = e ∧ b = y ∧ z ∈ c ∧ z /∈ f)∧
¬(∃〈g, h, i〉 ∈ TAT, j ∈ testSuite(x) :

j 6= tc ∧ g = j ∧ h = y ∧ z ∈ i)}
(57)

The new optimized products for all affected products can then
be derived by adding the set of newly used assets and removing
the set of no longer used assets, as shown in Eq. (58).

optimizeTC : TC→ {〈〈x, y〉 ∈ PR, 〈a ⊆ F, b ⊆ A〉〉},
(tc) 7→ 〈〈x, y〉, 〈a, b〉〉|∃〈x, y〉 ∈ affectedTC :

〈u, v〉 = optimize(〈x, y〉) ∧ a = x∧
b = v\outdAssetsTC(tc, 〈x, y〉))
∪addUsedAssetsTC(tc, 〈x, y〉))

(58)

Finally, the test-to-asset traceability TAT can be updated to
TAT′ as shown in Eq. (59).

TAT′ := (TAT\oldTracesTC(tc)) ∪ newTracesTC(tc) (59)

C. Feature-to-Test Traceability Change (∆FTT)

Consumer expectations and market demands change over
time. Thus, it is possible that certain features become more
crucial for consumer decisions and a product that includes a
specific feature is expected to include more actual functionality
than before. We have already discussed changing consumer
expectations may lead to updates of test cases in order to, for
example, make a test more rigourous with respect to certain
quality measures. However, often the consumer’s expectations
do not only change in terms of expected quality but also
in terms of functionality. While for the latter is would be
possible to adapt existing test cases, adding additional test
cases for checking the newly expected functionality is often
preferred as it helps keeping individual test cases separated
and maintainable. In principle, changed customer expectations
may also make existing test cases obsolete. In both cases,
traceability between features and test cases must be adapted.

1) Addition of Trace: Let us now discuss how the addition
of a new test case tc ∈ TC that checks functionality of the
feature f ∈ F is handled (i.e., a feature-to-test trace between
f and tc should be added). In this scenario, only those products
are affected that do include f and do not include another
feature that is already linked to the test case tc, as shown
in Eq. (60).

affProdFTTA : (P(F),TC)→ P(PR),

(x, y) 7→ {〈a, b〉 ∈ PR|y /∈ testSuite(a) ∧ x ⊆ a} (60)

For those affected products, the test case must be executed and
new test-to-asset traces are generated, as shown in Eq. (61).

newTracesFTTA : (P(F),TC)→ {〈a ∈ TC, b ⊆ A, c ⊆ A〉},
(x, y) 7→ {〈a, b, c〉|a = y ∧ ∃〈u, v〉 ∈ affProdFTTA(x, y) :

b = v ∧ c = assets(y, v)}
(61)

If, for a specific affected product, tc uses assets that are not
yet used by other test cases, those assets must be added to the
optimal product, similar to test case changes that lead to more
assets being used. The assets that are used only by the newly
required test case can be derived as shown in Eq. (62).

newAssetsFTTA : (P(F),TC,PR)→ P(A),

(w, x, 〈y, z〉) 7→ {a|∃〈b, c, d〉 ∈ newTracesFTTA(w, x) :

b = x ∧ c = z ∧ a ∈ d ∧ a /∈ optimize(〈y, z〉)}
(62)

The new optimized products for a desired addition of a new
feature-to-test trace can be derived incrementally as shown in
Eq. (63)

optimizeFTTA : (P(F),TC)→ {〈〈c, d〉 ∈ PR, 〈a ⊆ F, b ⊆ A〉〉},
(x, y) 7→ {〈〈c, d〉, 〈a, b〉〉|∃〈c, d〉 ∈ affProdFTTA(x, y) :

a = c ∧ b = optimize(c, d) ∪ newAssetsFTTA(x, y, 〈c, d〉)}
(63)

Finally, the test-to-asset traces must be updated and the
trace between f and tc must be added to construct the updated



feature-to-test traceability FTT′, as shown in Eq. (64) and Eq.
(65), respectively.

TAT′ := TAT ∪ newTracesFTTA(x, y) (64)
FTT′ := FTT ∪ {〈{f}, {tc}〉} (65)

2) Removal of Trace: Now, let us discuss how the desired
removal of an existing feature-to-test trace between the feature
f ∈ F and the test case tc ∈ TC is handled. If the trace
between f and tc should be removed, then those products are
affected that include tc in their test suite and do not include
other features that also require the test case, as shown in Eq.
(66).

affProdFTTR : (P(F),TC)→ P(PR),

(x, y) 7→ {〈a, b〉 ∈ PR|x ⊆ a∧
@z ⊆ a, 〈c, d〉 ∈ FTT : z 6= x ∧ z = c ∧ y ∈ d}

(66)

The test-to-asset traces for affected products and the no longer
required test case tc can be retrieved using the function shown
in Eq. (67).

affTracesFTTR : (P(F),TC)→ P(TAT),

(x, y) 7→ {〈a, b, c〉 ∈ TAT|a = y∧
∃〈d, e〉 ∈ affProdFTTR(x, y) : e = b}

(67)

As the test case tc is removed from test suites of affected
products, test-to-asset traces may become obsolete. Those
outdated traces can be derived as shown in Eq. (68).

outdTracesFTTR : (P(F),TC)→ P(TAT),

(x, y) 7→ {〈a, b, c〉 ∈ affTracesFTTR(x, y)|
@〈f, g〉 ∈ PR\affProdFTTR : a ∈ testSuite(f) ∧ g = b}

(68)

For an affected product, the assets that are used by tc but not
by any other test cases in the test suite can be removed from
the optimized version of the product; Eq. (69) shows how those
assets are derived.

outdAssetsFTTR : (P(F),TC,PR)→ P(A),

(x, y, 〈a, b〉) 7→ {c ∈ A|c ∈ b∧
(∃〈d, e, f〉 ∈ affTracesFTTR(x, y) :

d = y ∧ e = b ∧ c ∈ f)∧
(@〈g, h, i〉 ∈ TAT, v ∈ testSuite(a) :

v 6= y ∧ v = g ∧ h = b ∧ c ∈ i)}

(69)

The optimized versions of affected products for the intended
change can then be derived incrementally as shown in Eq. (70).

optimizeFTTR : (P(F),TC)→ {〈〈c, d〉 ∈ PR, 〈a ⊆ F, b ⊆ A〉〉},
(x, y) 7→ {〈〈c, d〉, 〈a, b〉〉|∃〈c, d〉 ∈ affProdFTTR(x, y) :

a = c ∧ b = optimize(c, d)\outdAssetsFTTR(x, y, 〈c, d〉)}
(70)

Of course, the test-to-asset and feature-to-test traces must be
updated, as shown in Eq. (71) and Eq. (72), respectively.

TAT′ := TAT\outdTracesFTTR(x, y) (71)
FTT′ := FTT\{〈{f}, {tc}〉} (72)

VI. VALIDATION

To demonstrate the feasibility of the approach and assess
its efficiency, we implemented a prototype tool for SPL
modeling and product optimization.2 Please note that neither
composing products from individual assets (e.g., [11], [17])
nor capturing traces during the execution of systems (e.g., [18],
[19]) is a technical challenge. Thus, we focused on validating
whether our approach is capable of performing incremental re-
optimization of products efficiently in case of SPL evolution.

A. Sample SPLs

For the tests, we randomly generated SPL with the follow-
ing characteristics: 25–500 features, 100–10,000 assets, 25–
1,000 test cases, 25–1,000 product configurations. To each
feature, a randomly selected set of implementing assets (with
a size between 1% and 5% of total assets) and a randomly
selected set of test cases (also with a size between 1% and
5% of total test cases) were assigned. Each generated product
consisted of a randomly selected set of features (containing
between 5% and 10% of all features). Each product’s test
suite and unoptimized assets were derived from the feature
selection. For each test case execution, a random subset of the
tested product’s unoptimized assets was defined to be used. In
total, 4,509 SPLs were generated.

B. Efficiency Tests

To asses the efficiency of our approach, the tests described
below were performed on each of the sample SPLs. The
benchmarks were run on an Intel Core i5-650 machine with
8GB of memory running Windows 7 Professional. For every
test, the median processing time for 100 executions was used
for our statistics. Note that the captured processing times do
not include times for test case execution. This is because those
test cases would have been executed for regression testing
anyway [20]. Thus, the performed tests assess the additional
effort required by our approach. Moreover, we only captured
changes that actually required a re-optimization of at least
one product. Five different tests were defined, one for each
of the evolution scenarios: ∆FAT (add (I) and remove (II)),
∆FTT (add (III) and remove (IV)), and ∆TC (V) in Section
V. For each of the sample SPLs, each test was executed with
every possible combination of feature and asset or test case
(for (I) and (III)), each existing trace (for (II) and (IV)), or
each existing test case (for (V)).

C. Results

To analyze the efficiency and scalability of our approach,
we regressed the required processing time on the most im-
portant variables (i.e., number of features, assets, test cases,
products, affected products, and re-optimized products). The
results are depicted in Table I. Note that the regression model
also allowed for quadratic growth. The results indicate that for
the squared values of SPL characteristic variables (e.g., number
of features) and the number of affected products the estimated
coefficients are either negative or below 0.005. Therefore, we
expect that increasing values for those variables do not cause
exponential growth in processing times.

2Available at http://www.sea.jku.at/tools/pospl.



TABLE I. REGRESSION RESULTS FOR EVOLUTION SCENARIOS.

Time(ms) Add FAT (I) Remove FAT (II) Add FTT (III) Remove FTT (IV) Change TC (V)
Features 0.919∗∗∗ 0.701∗∗∗ 0.0215∗∗∗ 0.114∗∗∗ 0.149∗∗∗

(0.00327) (0.00249) (0.000488) (0.0104) (0.0203)
Features2 -0.000767∗∗∗ -0.000572∗∗∗ -0.0000324∗∗∗ -0.000175∗∗ 0.00143∗∗∗

(0.00000362) (0.00000288) (0.00000283) (0.0000629) (0.000117)
Assets -0.00660∗∗∗ -0.00886∗∗ -0.0000198 -0.000998∗ -0.00105

(0.000834) (0.00277) (0.0000174) (0.000428) (0.000960)
Assets2 0.00000199∗∗∗ 0.00000171∗∗∗ 2.55e-08∗∗∗ 0.000000166∗∗∗ 0.000000318∗∗∗

(7.68e-08) (0.000000252) (1.60e-09) (3.93e-08) (8.80e-08)
Testcases 0.698∗∗∗ 0.527∗∗∗ 0.00645∗∗∗ 0.0792∗∗∗ 0.370∗∗∗

(0.00376) (0.00235) (0.000236) (0.00931) (0.0121)
Testcases2 0.000662∗∗∗ 0.000137∗∗∗ -0.00000819∗∗∗ -0.000234∗∗∗ -0.000885∗∗∗

(0.00000428) (0.00000238) (0.000000734) (0.0000403) (0.0000426)
Products -1.035∗∗∗ -1.071∗∗∗ -0.00456∗∗∗ -0.0102∗∗∗ 0.0568∗∗∗

(0.00520) (0.00403) (0.000107) (0.00234) (0.00246)
Products2 0.000571∗∗∗ 0.000503∗∗∗ 0.00000555∗∗∗ 0.00000510∗∗ -0.0000299∗∗∗

(0.00000415) (0.00000318) (8.30e-08) (0.00000171) (0.00000227)
Affected 28.80∗∗∗ 19.37∗∗∗ 0.0602∗∗∗ 0.366∗∗∗ 0.486∗∗∗

(0.277) (0.122) (0.00169) (0.0348) (0.0293)
Affected2 -0.668∗∗∗ -0.194∗∗∗ -0.0000304 -0.000454 0.00464∗∗∗

(0.0134) (0.00437) (0.0000186) (0.000355) (0.000290)
Re-optimized -7.377∗∗∗ 4.285∗∗∗ 0.121∗∗∗ 0.605∗∗∗ 0

(0.265) (0.113) (0.00175) (0.0352) (N/A)
Re-optimized2 0.498∗∗∗ 0.00305 0.00269∗∗∗ -0.00699∗∗∗ 0

(0.0133) (0.00435) (0.0000534) (0.000907) (N/A)
Constant -187.0∗∗∗ -148.1∗∗∗ -2.265∗∗∗ -14.04∗∗∗ -52.59∗∗∗

(0.939) (2.552) (0.0278) (0.693) (1.227)
Observations 1170383 815781 546816 15760 24388
R2 0.672 0.746 0.589 0.551 0.522
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

For Test (I), the regression shows that the number of
affected products and the number of re-optimizations are the
most important factors for determining processing time. The
mean processing time observed for Test (I) was 127ms for
changes that required a re-optimization of 12.3 products on
average. The average number of features for this test was
134.5. For Test (II), the results are similar to those of Test (I).
However, the number of affected and the especially the number
of re-optimized products do have a significantly smaller effect
on processing times. For Test (III) and Test (IV), we can see
that the most important variable is the number of re-optimized
products. For Test (IV), the second most important variable is
the number of affected products. The average times observed
for Test (III) and Test (IV) are 1.9ms and 8.3ms, respectively.
The mean number of re-optimized products per change was
5.5 for both tests. The estimation for Test (V) shows that the
time for processing a test case update depends primarily on
the number of affected products. The mean processing time
was 20.6ms and 7.2 products were re-optimized on average.

D. Threats to Validity

The use of random SPLs in our validation may be seen
as a threat to validity. Clearly, those SPLs do not necessarily
represent SPLs found in practice. However, characteristics of
real SPLs are also highly heterogeneous due to factors such
as the domain, employed technology, or also coding style.
Therefore, we chose to use random SPLs to cover a broad
variety of possible SPLs instead of relying on few real-world
examples that may not be representative.

Our approach also requires the traces between features and
test cases to be correct in order to apply the correct set of
tests and thus find the correct set of actually used assets.
However, note that these test cases are functionality tests for

the resulting product. Therefore, we believe that this is a
justifiable assumption since the connection between features
and the functionality their selection should add to the product
is usually well documented. Moreover, research has shown that
test case selection based on feature selections is feasible [21].

VII. RELATED WORK

Software product lines are an active field of research. We
now discuss approaches and developments closest to ours.

A relevant approach in terms of SPL consistency checking
is Safe Composition [2], which would typically infer all
products that can be configured for a given feature model are
valid with respect to the asset model (i.e., that all products
are working). Our approach focuses on practical aspects and
performs optimization only for configured products that are
working. By combining our approach with safe composition,
only products that are expected to work (with respect to known
dependencies between assets) can be configured and have to
be empirically tested and then optimized.

Various techniques have been proposed to construct SPLs,
including feature models and traceability, from already existing
products. Rubin and Chechik [22] proposed approaches for
constructing a feature-oriented SPL through refactoring and
finding suitable feature-to-asset traces. Linsbauer et al. [15] use
existing products and retrieving feature-to-asset traces. These
approaches take the asset combinations of the existing products
as given. With our optimization approach, those products can
be optimized so that only relevant traceability is generated.

Regarding SPL optimization, Guo et al. [23] presented
an approach for optimizing feature selections with respect to
resource constraints. They rely on feature models that are anno-
tated with resource information and optimize feature selections



so that certain resource constraints are met by the selection.
While they derive a feature combination that provides a good
match for given resource constraints, our approach focuses on
optimizing the resource consumption for a given selection.

Cordy et al. [24] investigated the effects of product line
evolution. Based on feature transition systems, different cat-
egories of features, and behavioral analysis they determine
which products have to be model checked after feature model
evolution. Sabouri et al. [25] proposed an approach for han-
dling the evolution of feature models. They use state-spaces for
possible products and support the reuse of consistency results
for the existing state space when checking the consistency of
the evolved product line using a Spin model checker. One of
biggest differences between our optimization approach and
those approaches is that we do not use traditional model-
checking techniques for finding possible areas of optimization
in an SPL. The theory presented in this paper in principle
enable the incremental determination of affected products and
test cases to be re-executed for checking whether those prod-
ucts still work. However, instead of relying on abstract formal-
izations, we leverage data gained during testing of the actual
product as it would be delivered to the customer. In doing
so, we avoid the necessity of translating the SPL definition to
formal concepts, which is typically non-trivial as dependencies
between complex assets must be defined precisely in order to
get valid reasoning results from model checkers. Furthermore,
our approach supports the evolution of all parts of an SPL.
Lochau et al. [26] presented an incremental approach for
managing test suites for product line regression testing. They
use deltas to determine which test cases become required
or obsolete as the consequence of evolution. Their approach
enables an efficient updating of feature-to-asset traces as it is
required in our approach. Neves et al. [14] proposed templates
for various SPL evolution scenarios that guide designers during
the process. While templates provide valuable guidance, our
approach instantly checks the evolved product line’s actual
validity – also in cases where no templates are available for
the evolution scenario.

VIII. CONCLUSIONS

In the paper we presented the basic formal concepts of
a product optimization approach for SPLs. Our approach
leverages functionality tests for finding and eliminating un-
necessary assets from individual products. We have shown
that the presented concepts support automatic and incremental
handling of SPL evolution. Performance tests showed that
the approach scales and provides quick information about the
effects of SPL evolution on products. The optimization results
can also be used for further optimization of variability and for
future work we plan to investigate those possibilities.

ACKNOWLEDGMENTS

The research was funded by the Austrian Science Fund
(FWF): P21321-N15, and FWF Lise-Meitner Fellowship
M1421-N15.

REFERENCES

[1] K. Pohl, G. Böckle, and F. van der Linden, Software product line
engineering - foundations, principles, and techniques. Springer, 2005.

[2] S. Thaker, D. S. Batory, D. Kitchin, and W. R. Cook, “Safe composition
of product lines,” in GPCE, pp. 95–104, 2007.

[3] K. Czarnecki and U. W. Eisenecker, Generative programming - meth-
ods, tools and applications. Addison-Wesley, 2000.

[4] N. I. Altintas, S. Cetin, A. H. Dogru, and H. Oguztüzün, “Modeling
product line software assets using domain-specific kits,” IEEE Trans.
Software Eng., vol. 38, no. 6, pp. 1376–1402, 2012.

[5] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H. Obbink, and
K. Pohl, “Variability issues in software product lines,” in PFE, pp. 13–
21, 2001.

[6] K. Pohl and A. Metzger, “Software product line testing,” Commun.
ACM, vol. 49, no. 12, pp. 78–81, 2006.

[7] V. Alves, P. Matos, L. Cole, A. Vasconcelos, P. Borba, and G. Ramalho,
“Extracting and evolving code in product lines with aspect-oriented pro-
gramming,” T. Aspect-Oriented Software Development, vol. 4, pp. 117–
142, 2007.

[8] M. Revelle and D. Poshyvanyk, “An exploratory study on assessing
feature location techniques,” in ICPC, pp. 218–222, 2009.

[9] B. S. Andersen and G. Romanski, “Verification of safety-critical soft-
ware,” Commun. ACM, vol. 54, no. 10, pp. 52–57, 2011.

[10] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software
product families: a case study,” Journal of Systems and Software,
vol. 74, no. 2, pp. 173–194, 2005.

[11] S. Apel, C. Kästner, and C. Lengauer, “Featurehouse: Language-
independent, automated software composition,” in ICSE, pp. 221–231,
2009.

[12] K. Czarnecki and M. Antkiewicz, “Mapping features to models: A
template approach based on superimposed variants,” in GPCE, pp. 422–
437, 2005.

[13] C. W. Krueger, “Easing the transition to software mass customization,”
in PFE, pp. 282–293, 2001.

[14] L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulesza, and P. Borba,
“Investigating the safe evolution of software product lines,” in GPCE,
pp. 33–42, 2011.

[15] L. Linsbauer, R. Lopez-Herrejon, and A. Egyed, “Recovering traceabil-
ity between features and code in product variants,” in SPLC, 2013.

[16] S. Yoo and M. Harman, “Regression testing minimization, selection
and prioritization: a survey,” Softw. Test., Verif. Reliab., vol. 22, no. 2,
pp. 67–120, 2012.

[17] S. Boxleitner, S. Apel, and C. Kästner, “Language-independent quantifi-
cation and weaving for feature composition,” in Software Composition,
pp. 45–54, 2009.

[18] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: a framework for
application performance monitoring and dynamic software analysis,” in
ICPE, pp. 247–248, 2012.

[19] X. Huang, J. Seyster, S. Callanan, K. Dixit, R. Grosu, S. A. Smolka,
S. D. Stoller, and E. Zadok, “Software monitoring with controllable
overhead,” STTT, vol. 14, no. 3, pp. 327–347, 2012.

[20] W. Heider, R. Rabiser, P. Grünbacher, and D. Lettner, “Using regression
testing to analyze the impact of changes to variability models on
products,” in SPLC, pp. 196–205, 2012.

[21] S. Wang, A. Gotlieb, S. Ali, and M. Liaaen, “Automated test case
selection using feature model: An industrial case study,” in MoDELS,
pp. 237–253, 2013.

[22] J. Rubin and M. Chechik, “Combining related products into product
lines,” in FASE, pp. 285–300, 2012.

[23] J. Guo, J. White, G. Wang, J. Li, and Y. Wang, “A genetic algorithm for
optimized feature selection with resource constraints in software product
lines,” Journal of Systems and Software, vol. 84, no. 12, pp. 2208–2221,
2011.

[24] M. Cordy, A. Classen, P.-Y. Schobbens, P. Heymans, and A. Legay,
“Managing evolution in software product lines: a model-checking
perspective,” in VaMoS, pp. 183–191, 2012.

[25] H. Sabouri and R. Khosravi, “Efficient verification of evolving software
product lines,” in FSEN, pp. 351–358, 2011.

[26] M. Lochau, I. Schaefer, J. Kamischke, and S. Lity, “Incremental model-
based testing of delta-oriented software product lines,” in TAP, pp. 67–
82, 2012.


